فصلنامه علمی

نوع مقاله : مقاله علمی

نویسندگان

1 گروه مدیریت بازرگانی، دانشکده علوم اجتماعی و اقتصادی، دانشگاه الزهرا (س)، تهران، ایران

2 پژوهشکده بیمه وابسته به بیمه مرکزی جمهوری اسلامی ایران

چکیده

هدف: امروزه سازمان‌ها برای بهبود فعالیت‌های خود به رویکردهای فرایند محور روی آورده‌اند. شناخت و اصلاح فرایندها در سازمان‌ها به دلیل صرفه‌جویی در زمان و کاهش هزینه ضروری می‌باشد.  مدیریت فرایند و مدیریت ریسک بنگاه و بررسی انطباق با قواعد از چالش‎های اصلی سازمان‌های فرایندمحور امروزی به‎خصوص شرکت‌های بیمه است. امروزه، بیمه موجب پیشرفت‌های شگرفی در جامعه ما شده است. در این بین تکنیک فرایندکاوی به شرکت‌های بیمه‌ای در شناسایی فرایند موجود و درک به موقع میزان عدم انطباق  فرایندهای عملیاتی با قواعد سازمان کمک می‌کند.
روش‌شناسی: این پژوهش هدف دارد با استفاده از تکنیک‎های فرایندکاوی از طریق متدولوژی ساختاریافته پیاده‌سازی پروژه‎های فرایندکاوی (PMPM)[1] به شناسایی فرایند موجود و درک به موقع میزان عدم انطباق با قواعد سازمان بپردازد. این مطالعه در یکی از شرکت‌های فعال بیمه کشور برای فرایندهای انتخابی آن مجموعه پیاده شده است.
یافته‌ها: در این پژوهش با استفاده از نگاره‌ رویدادهای[2] ثبت شده در سیستم‌های اطلاعاتی سازمان، شمایی از فرایند به دست آمده است. سپس با استفاده از نرم‎افزار پرام فرایندهای سازمانی تجزیه وتحلیل شده، توالی فعالیت‌های مربوط به فرایند با در نظر گرفتن قواعد کسب‌وکار منتخب، مورد بررسی قرار گرفته‎اند و درنهایت پیشنهاداتی جهت اصلاح فرایندها ارائه شده است.
نتیجه‌گیری: در این مطالعه موردی بینش‌های جدیدی که می‌تواند برای دیگر متخصصان در کاربرد فرایندکاوی در حوزه مالی مفید باشد ارائه شده است. این رویکرد می‌تواند در کنار رویکردهای لایه کنترل نظارت و بهبود عملکرد سیستم اطلاعاتی و کاهش ریسک عملیاتی مورد استفاده قرار گیرد. چراکه می‎تواند با ارائه تحلیل فرایندی به‌موقع مبتنی بر قواعد بینشی مفید برای سازمان به‎همراه آورد.

کلیدواژه‌ها

عنوان مقاله [English]

Risk Assessment and Compliance Checking of Business Rules in insurance by using of Process Mining Technique: Case study on Third-Party claim process

نویسندگان [English]

  • A. Khadivar 1
  • F. Frouzi 1
  • L. Niakan 2

1 Department of Business Management, Faculty of Social and Economic Sciences, Al-Zahra University (S), Tehran, Iran

2 Research Institute of Insurance affiliated to the Central Insurance of the Islamic Republic of Iran

چکیده [English]

Objective: Today, organizations have turned to process-oriented approaches to improve their activities. Knowing and correcting processes in organizations is necessary to save time and reduce costs. Process management and enterprise risk management and checking compliance with rules are among the main challenges of today's process-oriented organizations, especially insurance companies. Today, insurance has made tremendous progress in our society. In the meantime, the process analysis technique helps insurance companies in identifying the existing process and timely understanding the degree of non-compliance of operational processes with the rules of the organization.
Methodology: This research aims to identify the existing process and timely understand the level of non-compliance with the rules of the organization by using process mining techniques through the structured methodology of implementing process mining projects. This study has been implemented in one of the active insurance companies of the country for the selection processes of that group.
Findings: In this research, an image of the process has been obtained by using the events recorded in the organization's information systems. Then, using PRAM software, organizational processes have been analyzed, the sequence of activities related to the process, taking into account the selected business rules, have been examined, and finally, suggestions have been made to improve the processes.
Conclusion: In this case study, new insights have been provided that can be useful for other professionals in the application of process analysis in the financial field. This approach can be used along with control layer approaches to monitor and improve information system performance and reduce operational risk. Because it can provide useful insight for the organization by providing timely process analysis based on rules.

کلیدواژه‌ها [English]

  • Process mining
  • Compliance Checking
  • Business rules
  • Process improvement
  • Insurance
  • Enterprise risk management
کاتلر، فیلیپ و آرمسترانگ، گری (1383). اصول بازاریابی، علی پارسائیان، تهران، تابستان، ، چاپ سوم، جلد اول، 298.
حبیب­پورگتابی، کرم و صفری شالی، رضا (1388). راهنمای جامع کاربرد SPSS در تحقیقات پیمایشی (تحلیل داده‌های کمی)، نشر لوپه، چاپ دوم، 803.
شیرخدایی، میثم؛ نجات، سهیل؛ اکبری، امیر (1395). بخش‌بندی بازار بیمه عمر از طریق سبک زندگی مشتریان با استفاده از الگوی (AIO). تحقیقات بازاریابی نوین 21 (2)، صص 74-55.
افشار، مریم؛ سعیدپناه، مسعود؛ تیره عید و زهی، فرشید (1397). الگوی خوشه‌بندی مشتریان بیمه عمر (مطالعه­ موردی: یک شرکت بیمه­ای). پژوهشنامه بیمه،‎ 33 (2)، صص64-45.
Bayer, J., & Taillard, M. (2013). A new framework for customer segmentation. Harvard Business Review.
Bose, R., & Sugumaran, V. (2003). Application of knowledge management technology in customer relationship management. Knowledge and process management, 10(1), 3-17.
Berson, A., Smith, S., & Thearling, K. (1999). Building data mining applications for CRM. McGraw-Hill Professional.
Brooks, R. (1999). Alienating customers isn't always a bad idea, many firms discover. Wall Street Journal, 1, A12.
Campbell, N. C., & Cunningham, M. T. (1983). Customer analysis for strategy development in industrial markets. Strategic Management Journal, 4(4), 369-380.
Chaudhuri, A., & Shainesh, G. (2001). Implementing a technology bases CRM solution. The ICICI experience. Customer Relationship Management: Emerging Tools, Concepts and Applications, 174-184.
Chiu, T., Fang, D., Chen, J., Wang, Y., & Jeris, C. (2001, August). A robust and scalable clustering algorithm for mixed type attributes in large database environment. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 263-268).
Dogan, O., Ayçin, E., & Bulut, Z. (2018). Customer segmentation by using RFM model and clustering methods: a case study in retail industry. International Journal of Contemporary Economics and Administrative Sciences, 8(1), 1-19.
Gavett, G. (2014). What you need to know about segmentation. Harvard business review, 70, 5019-5028.
Griva, Anastasia, Cleopatra Bardaki, Katerina Pramatari, and Dimitris Papakiriakopoulos (2018). "Retail business analytics: Customer visit segmentation using market basket data." Expert Systems with Applications 100 (10), 1-16.
Hinton, T.D. (2001), the Spirit of Service: How to Create a Customer Focused Culture: A Customer Service Strategy for the New Decade and Beyond. Kendall Hunt Publishing Company.
Jagani, K., Oza, F. V., & Chauhan, H. (2020). Customer Segmentation and Factors Affecting Willingness to Order Private Label Brands: An E-Grocery Shopper's Perspective. In Improving Marketing Strategies for Private Label Products (227-253). IGI Global.
Kuo, R. J. (2001). A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm. European Journal of Operational Research, 129(3), 496-517.
Lieder, I., Segal, M., Avidan, E., Cohen, A., & Hope, T. (2019, December). Learning a faceted customer segmentation for discovering new business opportunities at Intel. In 2019 IEEE International Conference on Big Data (Big Data) (6136-6138). IEEE.
Liu, D. R., & Shih, Y. Y. (2005). Integrating AHP and data mining for product recommendation based on customer lifetime value. Information & Management, 42(3), 387-400.
Maass, P., Graf, A., & Bieck, C. (2008). Trust, Transparency and Technology: European Customers' Perspectives on Insurance and Innovation. IBM Global Services.
McWilliams, G. (2004). Analyzing customers, Best Buy decides not all are welcome. The Wall Street Journal Online.
Narayanan, A., Lawrence, F. B., Rao, B., and Krishnadevarajan, P. (2007), “Customer Stratification: Understanding Customer Profitability,” POMS 2007 Annual Conference.
Neal, W. D., & Wurst, J. (2001). Advances in market segmentation. Marketing research, 13(1), 14.
Newstead, S., & D’Elia, A. (2010). Does vehicle colour influence crash risk? Safety science, 48(10), 1327-1338.
Peker, S., Kocyigit, A., & Eren, P. E. (2017). LRFMP model for customer segmentation in the grocery retail industry: a case study. Marketing Intelligence & Planning, 35(4), 544-559.
Şchiopu, D. (2010). Applying TwoStep cluster analysis for identifying bank customers' profile. Buletinul, 62(3), 66-75.
Wei, J. T., Lin, S. Y., Weng, C. C., & Wu, H. H. (2012). A case study of applying LRFM model in market segmentation of a children’s dental clinic. Expert Systems with Applications, 39(5), 5529-5533.
Zablah, A. R., Bellenger, D. N., & Johnston, W. J. (2004). An evaluation of divergent perspectives on customer relationship management: Towards a common understanding of an emerging phenomenon. Industrial marketing management, 33(6), 475-489.
Zeithaml, V. A. (2000). Service quality, profitability, and the economic worth of customers: what we know and what we need to learn. Journal of the academy of marketing science, 28(1), 67-85.
Zeithaml, V. A., Rust, R. T., & Lemon, K. N. (2001). The customer pyramid: creating and serving profitable customers. California management review, 43(4), 118-142.
Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: an efficient data clustering method for very large databases. ACM Sigmod Record, 25(2), 103-114.

نامه به سردبیر


سردبیر نشریه پژوهشنامه بیمه، هرگونه پیشنهاد و انتقاد دیگر نویسندگان و خوانندگان را در خصوص نقد و بررسی این مقاله مندرج در سامانه نشریه را ظرف مدت 3 ماه از تاریخ انتشار آنلاین مقاله در سامانه و قبل از انتشار چاپی نشریه، به منظور اصلاح و نظردهی امکان پذیر نموده است.، البته این نقد در مورد تحقیقات اصلی مقاله نمی باشد.
توجه به موارد ذیل پیش از ارسال نامه به سردبیر لازم است در نظر گرفته شود:
[1] نامه هایی که شامل گزارش آماری، واقعیت ها، تحقیقات یا نظریه پردازی ها هستند، لازم است همراه با منابع معتبر و مناسب همراه باشد، اگرچه ارسال بیش از زمان 3 نامه توصیه نمی گردد.
[2] نامه هایی که بجای انتقاد سازنده به ایده های تحقیق، مشتمل بر حملات شخصی به نویسنده باشند، توجه و چاپ نمی شود.
[3] نامه ها نباید بیش از 300 کلمه باشد.
[4] نویسندگان نامه لازم است در ابتدای نامه تمایل یا عدم تمایل خود را نسبت به چاپ نظریه ارسالی نسبت به یک مقاله خاص اعلام نمایند.
[5] به نامه های ناشناس ترتیب اثر داده نمی شود.
[6] شهر، کشور و محل سکونت نویسندگان نامه باید در نامه مشخص باشد.
[7] به منظور شفافیت بیشتر و محدودیت حجم نامه، ویرایش بر روی آن انجام می پذیرد.


 

CAPTCHA Image