Document Type : Original Research Paper

Authors

1 PhD Student, Department of Management, Hamedan Branch, Islamic Azad University, Hamedan, Iran

2 Assistant Professor, Department of Economic Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran

3 Associate Professor, Department of Economic Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran

4 PhD Student, Department of Economic Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran

Abstract

BACKGROUND AND OBJECTIVES: The insurance industry constitutes a fundamental pillar in the economic infrastructure of any nation, fulfilling a critical function in the systematic management of diverse risks encountered by individuals, households, and businesses. By providing comprehensive insurance coverage, this sector safeguards stakeholders against potential financial losses arising from unforeseen events, thereby actively contributing to economic stabilization and long-term sustainability. In economies characterized by elevated uncertainty and volatile conditions – such as those experiencing frequent macroeconomic shocks or political instability – the propensity for individuals and firms to utilize insurance services demonstrably increases. This heightened demand stems from insurance's efficacy in mitigating both financial exposure (potential asset devaluation or income loss) and operational risks (business continuity threats). Consequently, insurance transcends its role as a mere financial instrument and emerges as a pivotal mechanism for national economic stabilization and a vital buffer against sudden adverse shocks.
Within this context, rigorous analysis of the influence exerted by key economic determinants – particularly macroeconomic uncertainty – on the insurance penetration rate (measured as the ratio of total insurance premiums to Gross Domestic Product, GDP) assumes paramount importance. A nuanced understanding of this relationship is indispensable for adopting effective economic policies and industry strategies. The primary objective of this research is therefore to conduct a rigorous empirical investigation into the specific impact of shocks originating from macroeconomic uncertainty on the insurance penetration rate within the distinctive and challenging economic landscape of Iran. Iran's economy, marked by international sanctions, significant political risks, volatile oil revenues, and recurrent macroeconomic disturbances, presents a compelling case study for examining how profound uncertainty shapes risk mitigation behaviors through formal insurance channels.
METHODS: This research employs a comprehensive and recent macroeconomic uncertainty index as the primary measurement of uncertainty. This index is constructed based on seven major economic variables: interest rates, inflation, exchange rates, oil prices, stock market indices, unemployment rates, and gross domestic product (GDP). The data spans the period from 1990 (Persian year 1369) to 2021 (Persian year 1400), covering both the uncertainty index and insurance penetration rates. To analyze the relationship between these variables, a Structural Vector Autoregression (SVAR) model is used. The SVAR model is capable of identifying and analyzing the impact of stochastic shocks to each variable and evaluating both short-term and long-term effects on insurance penetration. This methodological approach allows for a nuanced understanding of how macroeconomic uncertainty influences insurance demand over time. Precise identification assumptions, based on economic logic and the specific context of Iran (e.g., the exogeneity of oil price shocks), are incorporated within the SVAR model. These assumptions are vital for distinguishing between endogenous responses (how variables react to each other within the system) and genuine exogenous shocks, thereby ensuring the credibility and interpretability of the causal inferences drawn regarding the impact of uncertainty. This robust methodological approach provides a solid foundation for understanding the transmission mechanisms—how macroeconomic shocks propagate through the Iranian economy—and ultimately influence the demand decisions for insurance coverage by households and firms.
FINDINGS: The results demonstrate a positive and significant relationship between macroeconomic uncertainty and insurance penetration. Specifically, an increase in economic uncertainty correlates with heightened demand for insurance products. This indicates that as uncertainty and volatility in the economy rise, individuals and firms are more inclined to purchase insurance as a risk mitigation instrument. The long-term analysis reveals that shocks to the uncertainty index lead to a sustained increase in insurance penetration. Moreover, variance decomposition results reveal that, in the tenth period (2011-2021), approximately 73.30% of the fluctuations in insurance penetration are explained by macroeconomic uncertainty shocks. The findings also highlight that economic sanctions and political risks negatively and significantly impact insurance penetration, reducing its levels. Conversely, factors such as Foreign Direct Investment (FDI), oil price uncertainty, and human capital development show a positive and significant influence on increasing insurance demand.
CONCLUSION: Based on the study’s findings, it can be concluded that in conditions of high economic uncertainty, individuals and economic practitioners tend to rely more on insurance products. As a critical tool in risk management, insurance helps protect assets during unforeseen events, economic crises, and price fluctuations. Therefore, the policymakers should recognize these dynamics and develop strategic policies aimed at supporting and expanding the insurance sector. Effective policy measures can mitigate the adverse effects of economic uncertainty, reinforce economic stability, and promote broader insurance market development. Understanding these relationships enables policymakers to create targeted interventions that enhance financial resilience and foster sustainable economic growth, especially in uncertain environments such as Iran.

Keywords

Main Subjects

اشرف گنجویی، ر.، ایرانمنش، س.، و اعتصامی، ر. (1403). تأثیر تحریم‌های اقتصادی بر حجم تجارت ایران با تأکید بر کد بین‌المللی کالا. اقتصاد و الگو سازی، 15(1)، 1-46. https://doi.org/10.48308/jem.2024.236151.1928
بیمه مرکزی جمهوری اسلامی ایران (1402). سری زمانی آمار صنعت بیمه. بیمه مرکزی جمهوری اسلامی ایران. https://yun.ir/o1vt1e
پرور، م. (1398). بررسی آثار شاخص‌های کلان اقتصادی بر ضریب نفوذ بیمه در ایران با تأکید بر سرمایه انسانی و رشد ارزش افزوده بخش صنعت. تحلیل‌های اقتصادی توسعه ایران، 7(2)، 109-127. https://doi.org/10.22051/edp.2020.32047.1246
شاه‌آبادی، ا.، مرادی، ع.، و احسانی، ا. (۱۳۹۹). اثر ریسک کشوری بر ضریب نفوذ بیمه عمر در کشورهای منتخب. اقتصاد و تجارت نوین، 4(49)، ۸۷–۱۰۶. https://doi.org/10.30465/jnet.2020.6409
عزیزی، و.، جواهری، ب.، و حبیبی، ف. (۱۴۰۳). تأثیر تحریم‌های اقتصادی و بلایای طبیعی بر درآمد سرانه ایران. پژوهش‌های اقتصادی ایران، ۲۹(۹۹)، ۱۹۴–۲۴۲. https://doi.org/10.22054/ijer.2024.79711.1279
علی‌مرادی‌افشار، پ.، منوچهری، ص.، و امانی، ر. (۱۴۰۲). نااطمینانی اقتصاد کلان، ریسک سیاسی و نوسانات بازار ارز در ایران. نظریه‌های کاربردی اقتصاد، ۱۰(۳)، ۶۷–۱۰۲. https://doi.org/10.22054/ijer.2024.79711.1279
فرهنگ، ا. (۱۴۰۱). اثرات نااطمینانی سیاست‌های اقتصادی بر صنعت بیمه: رهیافت PMG. مدلسازی اقتصادسنجی، ۷(۱)، ۱۵۵–۱۷۸. https://doi.org/10.22075/jem.2022.27386.1732
قربانی، ز.، علی‌مرادی‌افشار، پ.، و فقه‌مجیدی، ع. (۱۴۰۳). تأثیر نااطمینانی اقتصاد کلان بر امنیت غذایی در ایران با استفاده از رهیافت خودرگرسیون برداری ساختاری .(SVAR) سیاست‌ها و تحقیقات اقتصادی، ۳(۴)، ۸۸–۱۲۵. https://doi.org/10.22034/jepr.2025.142244.1178
گودرزی‌فراهانی، ی.، عادلی، ا.، و درویش‌پور، ف. (۱۴۰۳). اثر نوسانات متغیرهای کلان اقتصادی بر توانگری مالی صنعت بیمه در ایران. پژوهشنامه اقتصاد کلان، ۱۹(۴۱)، ۲۹–۵۳. https://doi.org/10.22080/iejm.2024.26650.2038
مظفری، ز.، و جواهری، ب. (۱۴۰۰). برآورد سرمایه انسانی در ایران با استفاده از منطق فازی. پژوهش‌های اقتصادی ایران، ۲۶(۸۹)، ۶۳–۹۳. https://doi.org/10.22054/ijer.2021.60280.964
نیاکان، ل.، و رجائی هرندی، س. (1400). بررسی تأثیر تمرکز بازار بر ضریب نفوذ بیمه: رویکرد پانل دیتا. پژوهشنامه اقتصاد و برنامه‌ریزی، 26(4)، 93-122. https://doi.org/10.52547/jpbud.26.4.93
 
Ahmed, D., Xuhua, H., Goldstein, M. A., & Xie, Y. (2024). Do global uncertainties hurdle insurance activity? Empirical evidence from two top economies. Finance Research Letters,) 105735(. https://doi.org/10.1016/j.frl.2024.105735
Alhassan, A. L., & Fiador, V. (2014). Insurance-growth nexus in Ghana: An autoregressive distributed lag bounds cointegration approach. Review of Development Finance, 4(2), 83–96. https://doi.org/10.1016/j.rdf.2014.06.001
Alimoradi Afshar, P., Manochehri, S., & Amani, R. (2023). Macroeconomic uncertainty, political risk and exchange rate market fluctuations in Iran. Quarterly Journal of Applied Theories of Economics, 10(3), 67–102. https://doi.org/10.22034/ecoj.2023.54679.3146 [In Persian].
Arel-Bundock, V., Peinhardt, C., & Pond, A. (2020). Political risk insurance: A new firm-level data set. Journal of Conflict Resolution, 64(5), 987-1006. https://doi.org/10.1177/0022002719875754
Ashraf Ganjoei, R., Iranmanesh, S., & Etesami, R. (2024). The effect of economic sanctions on the volume of trade of Iran with emphasis on the international trade of goods. Journal of Economics and Modelling, 15(1), 1–46. https://doi.org/10.48308/jem.2024.236151.1928 [In Persian].
Azizi, V., Javaheri, B., & Habibi, F. (2024). The effect of economic sanctions and natural disasters on Iran’s per capita income [In Persian]. Iranian Journal of Economic Research, 29(99), 194–242. https://doi.org/10.22054/ijer.2024.79711.1279 [In Persian].
Balcilar, M., Gupta, R., Lee, C. C., & Olasehinde-Williams, G. (2020). Insurance and economic policy uncertainty. Research in International Business and Finance54(101253). https://doi.org/10.1016/j.ribaf.2020.101253
Ball, L., Cecchetti, S. G., & Gordon, R. J. (1990). Inflation and uncertainty at short and long horizons. Brookings Papers on Economic Activity1990(1), 215-254. https://doi.org/10.2307/2534528
Bernanke, B. S. (1986). Alternative explanations of the money-income correlation. Carnegie-Rochester Conference Series on Public Policy, 25(1), 49–99. https://www.nber.org/papers/w1842
Blanchard, O. J., & Quah, D. (1989). The dynamic effects of aggregate demand and supply disturbances. The American Economic Review, 79(4), 655–673. https://www.jstor.org/stable/1827924?origin=JSTOR-pdf
Blanchard, O. J., & Watson, M. W. (1986). Are business cycles all alike? In R. J. Gordon (Eds.), The American business cycle: Continuity and change (pp. 123‏-‏180). University of Chicago Press. https://www.nber.org/system/files/chapters/c10021/c10021.pdf
Canh, N. P., Wongchoti, U., & Thanh, S. D. (2021). Does economic policy uncertainty matter for insurance development? Evidence from 16 OECD countries. The Geneva Papers on Risk and Insurance-Issues and Practice, 46(4), 614-648. https://doi.org/10.1057/s41288-020-00192-5
Central Insurance of the Islamic Republic of Iran. (2023). Time series of insurance industry statistics. Central Insurance of the Islamic Republic of Iran. https://yun.ir/o1vt1e [In Persian].
Chatziantoniou, I., Duffy, D., & Filis, G. (2013). Stock market response to monetary and fiscal policy shocks: Multi‏-‏country evidence. Economic modelling, 30, 754‏-‏769. https://doi.org/10.1016/j.econmod.2012.10.005
Clarida, R., & Gali, J. (1994). Sources of real exchange rate fluctuations: How important are nominal shocks?. Carnegie-Rochester Conference Series on Public Policy, 41, 1–56. https://doi.org/10.1016/0167-2231(94)00012-3
Cukierman, A., & Meltzer, A. H. (1986). A theory of ambiguity, credibility, and inflation under discretion and asymmetric information. Econometrica, 54(5), 1099–1128. https://doi.org/10.2307/1912324
Davidson, P. (1991). Is probability theory relevant for uncertainty? A post Keynesian perspective. Journal of Economic Perspectives, 5(1), 129-143. https://www.aeaweb.org/articles?id=10.1257/jep.5.1.129
Farhang, A. A. (2022). The effects of Economic Policy Uncertainty on the Insurance Industry (PMG approach). Journal of Econometric Modelling7(1), 155-178. https://doi.org/10.22075/jem.2022.27386.1732 [In Persian].
Ghorbani, Z., Alimoradi Afshar, P., & Fegheh Majidi, A. (2025). The impact of macroeconomic uncertainty on food security in Iran using structural vector autoregression approach (SVAR). Economic Policies and Research, 3(4). https://doi.org/10.22034/jepr.2025.142244.1178 [In Persian].
Glaister, S. (1978). Mathematical methods for economists (2nd Ed.). Blackwell. https://cir.nii.ac.jp/crid/1971149384882506561
Grazy, L. T., Parimalarani, G., & Meena, M. R. (2019). Foreign direct investment in insurance sector: A key for better insurance penetration. International Journal of Recent Technology and Engineering, 8(3), 358-362. http://dx.doi.org/10.35940/ijrte.C1076.1083S19
Guo, A., Wei, H., Zhong, F., Liu, S., & Huang, C. (2020). Enterprise sustainability: Economic policy uncertainty, enterprise investment, and profitability. Sustainability12(9), 3735. https://doi.org/10.3390/su12093735
Gudarzi Farahani, Y., Adeli, O., & Darvishpour, F. (2024). The effect of fluctuations of macroeconomic variables on the Solvency of the insurance industry in Iran. Macroeconomics Research Letter19(41). https://doi.org/10.22080/iejm.2024.26650.2038 [In Persian].
Gupta, R., Lahiani, A., Lee, C. C., & Lee, C. C. (2019). Asymmetric dynamics of insurance premium: The impacts of output and economic policy uncertainty. Empirical economics, 57(6), 1959-1978. https://doi.org/10.1007/s00181-018-1539-z
Hemrit, W. (2021). Does insurance demand react to economic policy uncertainty and geopolitical risk? Evidence from Saudi Arabia. The Geneva papers on risk and insurance. Issues and practice, 47(2), 460. https://doi.org/10.1057/s41288-021-00229-3
Inniss, A. B. (2010). Rethinking Political Risk Insurance: Incentives for Investor Risk Mitigation. Southwestern Journal of International Law16(2), 477-499. https://heinonline.org/HOL/LandingPage?handle=hein.journals/sjlta16&div=20&id=&page=
Jurado, K., Ludvigson, S. C., & Ng, S. (2015). Measuring uncertainty. American Economic Review, 105(3), 1177–1216. https://www.aeaweb.org/articles?id=10.1257/aer.20131193
Kitao, S. (2014). A life-cycle model of unemployment and disability insurance. Journal of Monetary Economics, 68, 1-18. https://doi.org/10.1016/j.jmoneco.2014.07.008
Leeper, E. M., Sims, C. A., Zha, T. (1996). What does monetary policy do? Brookings papers on economic activity, 2, 1‏-‏78. https://www.brookings.edu/wp-content/uploads/1996/06/1996b_bpea_leeper_sims_zha_hall_bernanke.pdf
Leloudas, G. (2020). The role of insurance in sanctions regimes. In B. Soyer, & A. Tettenborn (Eds.), Ship operations: New risks, liabilities and technologies in the maritime sector (pp. 22–43). Informa Law from Routledge. https://doi.org/10.4324/9781003000754-2
Liu, W. (2021). Human capital accumulation, income protection insurance and poverty reduction in the least developed countries. Australian Economic Papers, 60(2), 361–372. https://doi.org/10.1111/1467-8454.12208
Moran, M., & Salisbury, D. (2014). Sanctions and the insurance industry: Challenges, risks and opportunities. Business and Politics, 16(3), 429–451. https://ideas.repec.org/a/cup/buspol/v16y2014i03p429-451_00.html
Mozaffari, Z., & Javaheri, B. (2021). Estimation of human capital in Iran using fuzzy logic. Iranian Journal of Economic Research, 26(89), 63–93. https://doi.org/10.22054/ijer.2021.60280.964 [In Persian].
Nguyen, L. N. T., & Tran, T. H. Q. (2021). The effect of customer experience and perceived value on customer satisfaction: A case study of insurance service in Vietnam. Research Inventy: International Journal of Engineering and Science, 11(10), 20-29.  https://elib.vku.udn.vn/handle/123456789/2174
 
Niakan, L., & Rajaee Harandi, S. (2022). The impact of market concentration on insurance penetration rate: Panel data approach. Journal of Planning and Budgeting, 26(4), 93–122. https://doi.org/10.52547/jpbud.26.4.93 [In Persian].
Nourani, M., Chandran, V. G. R., Kweh, Q. L., & Lu, W.-M. (2018). Measuring human, physical and structural capital efficiency performance of insurance companies. Social Indicators Research, 137(1), 281–315. https://doi.org/10.1007/s11205-017-1584-6
 
Parvar, M. (2020). Investigating the effects of macroeconomic indicators on insurance penetration rate in Iran with emphasis on human capital and value added growth of the industrial sector. Iranian Economic Development Analyses, 8(2), 1–18. https://doi.org/10.22051/edp.2020.32047.1246 [In Persian].
Poulsen, L. N. S. (2010). The importance of BITs for foreign direct investment and political risk insurance: Revisiting the evidence. In K. P. Sauvant (Ed.), Yearbook on International Investment Law and Policy 2009/2010 (pp. 539–574). Oxford University Press. https://doi.org/10.2139/ssrn.1685876
Saha, S., & Roy, S. (2024). An empirical study on the relative stance of Indian insurance market within the framework of selected international insurance markets. In R. Bhattacharyya, & D. Mazumdar (Eds.), Contemporary Issues in International Trade: Challenges and Opportunities (pp. 149–160). Emerald Publishing. https://doi.org/10.1108/978-1-83797-320-020241009
Shahabadi, A., Moradi, A., & Ehsani, A. (2020). The Effect of Country Risk on Life Insurance Penetration in Selected Countries. Quarterly Journal of New Economy and Trade15(4), 87-106. https://doi.org/10.30465/jnet.2020.6409 [In Persian].
Shahrazi, M., Ghaderi, S., & Sanginabadi, B. (2023). Commodity prices and inflation: An application of structural VAR. Applied Economics, 55(27), 3110‏-‏3120. https://doi.org/10.1080/00036846.2022.2108753
Shameem, A. (2021). Foreign direct investment and its impact on insurance sector. Emperor Journal of Economics and Social Science Research, 3(05), 171-179. https://web.archive.org/web/20210615052139id_/https://ejessr.mayas.info/2021/spl_may_2021/sp_may-2021-20.pdf
Simionescu, M., & Ulbinaitė, A. (2021). The relationship between insurance market and macroeconomic indicators in the Baltic States. Journal of Baltic Studies, 52(3), 373-396. https://doi.org/10.1080/01629778.2021.1920440
Augustine, S. Y., & Maliki, O. T. (2021). Macroeconomic environment and its implication on the penetration of insurance business in Nigeria. Research Journal of Management Sciences, 10(3), 15–24. https://www.isca.in/IJMS/Archive/v10/i3/3.ISCA-RJMS-2021-001.php#references
Zhang, T., Zhou, P., Li, Y., & Chen, J. (2024). Insurance companies’ risk-taking behavior in the face of economic policy uncertainty: A mediated analysis. Current Psychology, 43(31), 25531–25550. https://doi.org/10.1007/s12144-024-06183-2

Letters to Editor


IJIR Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in IJIR should be sent to the editorial office of IJIR within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.
CAPTCHA Image